Collectin子接口之一:Set接口

Set接口概述:

  • Set接口是Collection的子接口,Set接口没有提供额外的方法。
  • Set集合不允许包含相同的元素,如果试把两个相同的元素加入同一个Set集合中,则添加操作失败。
  • Set判断两个对象是否相同不是使用 == 运算符,而是根据 equals() 方法。

Set实现类之一:HashSet

  • HashSet 是 Set 接口的典型实现,大多数时候使用 Set 集合时都使用这个实现类。

  • HashSet 按 Hash 算法来存储集合中的元素,因此具有很好的存取、查找、删除性能。

  • HashSet 具有以下特点:

    • 不能保证元素的排列顺序。
    • HashSet 不是线程安全的。
    • 集合元素可以是 null。
  • HashSet 集合判断两个元素相等的标准:两个对象通过 hashCode() 方法比较相

    等,并且两个对象的 equals() 方法返回值也相等。

  • 对于存放在Set容器中的对象,对应的类一定要重写equals()和hashCode(Object

    obj)方法,以实现对象相等规则。即:“相等的对象必须具有相等的散列码”。

向HashSet中添加元素的过程:

  • 当向 HashSet 集合中存入一个元素时,HashSet 会调用该对象的 hashCode() 方法来得到该对象的 hashCode 值,然后根据hashCode 值,通过某种散列函数决定该对象在 HashSet 底层数组中的存储位置。(这个散列函数会与底层数组的长度相计算得到在数组中的下标,并且这种散列函数计算还尽可能保证能均匀存储元素,越是散列分布,该散列函数设计的越好)。

  • 如果两个元素的hashCode()值相等,会再继续调用equals方法,如果equals方法结果

    为true,添加失败;如果为false,那么会保存该元素,但是该数组的位置已经有元素了,

    那么会通过链表的方式继续链接。

  • 如果两个元素的 equals() 方法返回 true,但它们的 hashCode() 返回值不相

    等,hashSet 将会把它们存储在不同的位置,但依然可以添加成功。

HashSet结构图:

Set接口框架:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|----Collection接口:单列集合,用来存储一个一个的对象
|----Set接口:存储无序的、不可重复的数据 -->高中讲的“集合”
|----HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null
|----LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历
|----TreeSet:可以按照添加对象的指定属性,进行排序

1:对于频繁的遍历操作,LinkedHashSet效率高于HashSet。

2:Set接口中没有额外定义新的方法,使用的都是Collection中声明过的方法。

3:要求:向Set(主要指:HashSet、LinkedHashSet)中添加的数据,其所在的类一定要重写hashCode()和equals()
要求:重写的hashCode()和equals()尽可能保持一致性:相等的对象必须具有相等的散列码
重写两个方法的小技巧:对象中用作 equals() 方法比较的 Field,都应该用来计算 hashCode 值。
----------------------------------------------------------------------------------------------------

Set:存储无序的、不可重复的数据
以HashSet为例说明:
1. 无序性:不等于随机性。存储的数据在底层数组中并非按照数组索引的顺序添加,而是根据数据的哈希值决定的。

2. 不可重复性:保证添加的元素按照equals()判断时,不能返回true.即:相同的元素只能添加一个。

添加元素的过程:以HashSet为例:
我们向HashSet中添加元素a,首先调用元素a所在类的hashCode()方法,计算元素a的哈希值,
此哈希值接着通过某种算法计算出在HashSet底层数组中的存放位置(即为:索引位置),判断
数组此位置上是否已经有元素:
如果此位置上没有其他元素,则元素a添加成功。 --->情况1
如果此位置上有其他元素b(或以链表形式存在的多个元素),则比较元素a与元素b的hash值:
如果hash值不相同,则元素a添加成功。--->情况2
如果hash值相同,进而需要调用元素a所在类的equals()方法:
equals()返回true,元素a添加失败
equals()返回false,则元素a添加成功。--->情况3

对于添加成功的情况2和情况3而言:元素a 与已经存在指定索引位置上数据以链表的方式存储。
jdk 7 :元素a放到数组中,指向原来的元素。
jdk 8 :原来的元素在数组中,指向元素a
总结:七上八下

HashSet底层:数组+链表的结构。
------------------------------------------------------------------------------------------------------
public class SetTest {
@Test
public void test1(){
Set set = new HashSet();
set.add(456);
set.add(123);
set.add(123);
set.add("AA");
set.add("CC");
set.add(new User("Tom",12));
set.add(new User("Tom",12));
set.add(129);

Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}

// LinkedHashSet的使用
// LinkedHashSet作为HashSet的子类,在添加数据的同时,每个数据还维护了两个引用,记录此数据前一个
// 数据和后一个数据。
// 优点:对于频繁的遍历操作,LinkedHashSet效率高于HashSet

@Test
public void test2(){
Set set = new LinkedHashSet();
set.add(456);
set.add(123);
set.add(123);
set.add("AA");
set.add("CC");
set.add(new User("Tom",12));
set.add(new User("Tom",12));
set.add(129);

Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
}

TreeSet:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
public class TreeSetTest {

/*
1.向TreeSet中添加的数据,要求是相同类的对象。
2.两种排序方式:自然排序(实现Comparable接口) 和 定制排序(Comparator)


3.自然排序中,比较两个对象是否相同的标准为:compareTo()返回0.不再是equals().
4.定制排序中,比较两个对象是否相同的标准为:compare()返回0.不再是equals().
*/
@Test
public void test1(){
TreeSet set = new TreeSet();

//失败:不能添加不同类的对象

// set.add(123);
// set.add(456);
// set.add("AA");
//

set.add(new User("Tom",12));

//举例一:

// set.add(34);
// set.add(-34);
// set.add(43);
// set.add(11);
// set.add(8);

//举例二:
set.add(new User("Tom",12));
set.add(new User("Jerry",32));
set.add(new User("Jim",2));
set.add(new User("Mike",65));
set.add(new User("Jack",33));
set.add(new User("Jack",56));

Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}

}

@Test
public void test2(){
Comparator com = new Comparator() {
//按照年龄从小到大排列
@Override
public int compare(Object o1, Object o2) {
if(o1 instanceof User && o2 instanceof User){
User u1 = (User)o1;
User u2 = (User)o2;
return Integer.compare(u1.getAge(),u2.getAge());
}else{
throw new RuntimeException("输入的数据类型不匹配");
}
}
};

TreeSet set = new TreeSet(com);
set.add(new User("Tom",12));
set.add(new User("Jerry",32));
set.add(new User("Jim",2));
set.add(new User("Mike",65));
set.add(new User("Mary",33));
set.add(new User("Jack",33));
set.add(new User("Jack",56));

Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}

}